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Actin Dynamics, Architecture, and Mechanics
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Mechanotransduction
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Cellular signaling pathways
* Rho-family GTPases
* Mlitogen-activated protein kinase and extracellular signal-regulated

kinase (MAPK-ERK]
* Nuclear translocation of transcriptional regulators ([YAP/TAZ)

Expression of mechanosensitive genes




Mechanotransduction

* Specific proteins undergo force-induced alterations in conformation
* (Changes in catalytic activity
* Affinity to binding partners (catch and slip bond])

* Mechanical force can shift the equilibrium between pre-existing states
* (One myosin molecule: 2pN




Catch bond

* Unbinding rates decrease with applied force up to a given threshold
* Above that thresholds, unbinding rates increase (slip bond]
e (Optimal stability: minimum unbinding rate
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Receptor clustering

* Clustering into adhesion complexes
* Maybe facilitated by controlled diffusion
* Ligand-bound integrins are constrained
* Minimizes elastic energy by decreasing the applied strain
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Functional organization of the genome
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Integrins

* Transmembrane receptors
* Found in all animals
* Several types exist, one cell generally has multiple different types
* Upon ligand binding, integrins activate signal transduction pathways
* Ligands include
* Fibronectin [>8 integrins), collagen, and laminin (>5 integrins]
* The name was inspired by its function: integrator
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Integrin-mediated mechanotransduction

Integrins connect the extracellular matrix with F-actin cytoskeleton
Transduce forces generated by the actin retrograde flow and myaosin Il to
the ECM through focal adhesion proteins

Force alters the functions of mechanosensitive proteins
Rapid responses in cellular mechanics  — 2« o mt
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Molecular clutch hypothesis

Mechanical linkage formed by dynamic associations between
* ECM-bound integrins
* Force-generating actomyosin cytoskeleton

* The clutch is mediated by talin and vinculin

* Talin directly interacts with the cytoplasmic domain of activated integrins
and F-actin

* Vinculin binds to talin and F-actin to strengthen connections

e C(lutch is disengaged
* Retrograde actin flow is fast and traction forces are very low
* Engagement of the clutch
* The kinetic power of the actin retrograde flow and actomyosin
contractility are converted into traction forces
* Polymerizing F-actin pushes the resistant plasma membrane at the
leading edge forward = protrusions




Molecular clutch hypothesis

Traction force FA belt

Fibrillar adhesion

R
e

2

Slip bond Slip bond Catch bond Catch bond
Traction force Traction force Traction force

T 9 r‘/.('\u/

G-actin  F-actin Talin Kank Liprin-81  Kindlin Vinculin  Paxillin Integrin ECM




Molecular clutch hypothesis

4
* Molecular clutch is sensitive to ECM rigidity /f_ EVinculin 3 &

|J =
1alill <

] |ntégfi§£;§'
 (On stiff substrates é '&
Soft ECM

* Fast mechanical loading rates
* Protein unfolding of talin

e Expose cryptic sites
P yp ,T: & Vinculin {g

Vinculin binding and reinforcement

Higher forces |ntégn'n’:!' : E
 (On soft substrates Stiff ECM

* Substrate easily deforms

* Slow mechanical loading rate Z Vinculin
* Not sufficient to induce vinculin-dependent reinforcement 3 Talin
* Transmission at low level | Integrin
= ECM ligand

* Frictional Slippage and Stick-Slip rather than static connections
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Molecular clutch hypothesis

* Myosin motors contract actin flaments at a fixed speed (120 nm/s] if
their action is unopposed by force

* If a force opposes myosin action, contraction speed will decrease with
force until stalling completely at 2 pN

* Force transmitted to molecular bonds increase the lifetime

* Binding and unbinding rates

* Bonds fail at high force: catastrophic event or stick-slip

* Substrate controls the loading rate

* Unbinding rates become faster than binding rates above optimal rigidity
* Number of clutches simultaneously engages drops drastically
* Frictional slippage

* Biphasic relationship between rigidity (loading rate) and force
* First increase and then decrease
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Molecular tension sensors

Piconewton accuracy
Change in fluorescence signal
Integrins apply forces
between 1 and 5 pN
DNA-based sensors: up to 15 pN
Rupture: up to 40 pN
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Vinculin forms a catch bond with F-actin

* Force toward pointed end of the actin filament resulted in a bond that
was maximally stable at 8 pN with a mean lifetime of 12 seconds
* Directional and force-stabilizing binding of vinculin to F-actin
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Stretching single talin rod molecules

* Force extension experiment with MT
* Unfolding and binding events

 (Constant calibrated force with AFM Magnetic
] tweezers
* Unfolding rate
i Up to 150 pN Avidinated T
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3D nanoscale architecture of focal adhesions

* Super resolution fluorescence microscopy
* Photoactivated localization microscopy (PALM]

Actin stress fibre
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Force transduction layer
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Methods for measuring cellular forces

AFM, tweezers, droplets/gels, laser cutting, time-lapse imaging, traction
force microscopy, actuated substrates, wound healing assays

- = = = = = = _ = = = =
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Traction force microscopy: Silicone rubber substrate

* \When cells are cultured on very thin sheets of cross-linked silicone fluid,
the traction forces are made visible as elastic distortion and wrinkling of
the substrate [Science, 1980]
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Traction force microscopy: Silicone rubber substrate

* Specifications of the material
* Asinert as possible
* Nontoxic
* Transparent
* Shows sufficiently little strain-induced birefringence
* Refractive index does not depend on the polarity of the light
* Dogma on dehydration [goes back to Paul Weiss]

* Solution: brief exposure of silicone fluid to a flame
* Crosslinks the outermost layer
* 1 um thick skin on an un-crosslinked fluid that serves as a lubricant
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Traction force microscopy: Silicone rubber substrate

* (Cells slowly pull the rubber sheet centripetally past their lower surface

* Produce pronounced winkles

* The sheet quickly expands to its original shape when the cells are detached
* Measure shear forces using a calibrated glass microneedle

* Shear forces on the order of 0.001 dyne/um (1 dyne = 10 pN)]
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Traction force microscopy: Silicone rubber substrate




Traction force microscopy: Silicone rubber substrate

* \Wrinkles in silicone substrate are usually larger than the cells generating
them

* \Winkles develop very slowly
* Whrinkles are intrinsically nonlinear and chaotic

-

* Very limited spatial and temporal resolution
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Traction force microscopy: polyacrylamide substrate

Linearly elastic material
Tunable stiffness
 Variations of monomer and cross-linker concentrations

/0 um thick layer covalently bonded to glass coverslip
Fluorescent latex makers beads randomly distributed throughout the gel
The surface of the gel is covalently decorated with type | collagen
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Traction force microscopy: polyacrylamide substrate

* The unit of Young’'s modulus is kPa
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Traction force microscopy: polyacrylamide substrate

200 RBRMS bead displacements (Biophysical Journal, 19399]
* Propulsive thrust: 1 uN

20 Microns
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Traction force microscopy: polyacrylamide substrate

* An attractive hypothesis is that, when receptors become anchored to a
rigid substrate or cross-inked, the resistance to cytoskeleton-generated
forces causes an increase in tension at adhesion structures and activates
downstream signals through a force-sensitive enzyme complex.

* However, to detect flexibility, it is necessary for the cells to modulate and
measure the probing force in response to different substrate resistance
(otherwise, cells will simply deform soft substrates to an increasing extent
until they experience a similar resistance as on stiff substrates).

* Alternatively, cells may be able to measure the amount of substrate
deformation as they apply a defined probing force.




Traction force microscopy: polyacrylamide substrate
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super-resolved traction force microscopy

* Twofold increase in spatial resolution [up to 500 nm)
* Takes a few minutes to gather sufficient information on markers

Technique

Resolution (spatial/force)

Geometry

Magnitude/direction of force

FRET force sensors
Micropillar
TFM

STFM

Single molecule/10s pN
1-2 um/50 pN
1-2 um/1 nN

0.4-1 um/<1 nN

2D
2D
2D and 3D

2D

Magnitude only
Magnitude and direction
Magnitude and direction

Magnitude and direction
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From 2D to 3D

2.0 TFM to quantify the normal forces
3D scaffolds to monitor forces in all dimensions

F.

Traction
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Traction force microscopy: PEG hydrogel matrix

* Proteolytically  degradable
domains in the polymer

* Pendant adhesive ligands

* C(Cell caninvade and spread

* Young’'s modulus 0.6-1kPa

* Tracking displacements of
80,000 fluorescent beads

Bead displacement (um)

* Up to 50% strain in the
vicinity of slender extensions
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Traction force microscopy: PEG hydrogel matrix
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Traction force microscopy: PEG hydrogel matrix
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Traction force microscopy: collagen gel

* Methods rely on linear force-displacement response of the substrate
* Natural ECM is highly nonlinear [shear stiffening]
* How to use natural ECM?

Micromechanical models with a continuum description
On a small spatial scale corresponding to a fiber segment, the local
deformation of the fiber segment does not follow the bulk deformation
Non-affine behavior caused by

* Fiber buckling, straightening, or stretching
Deformations become affine for a sufficiently large volume of material
Averaging the force contributions of all fibers

-

oA do V<0 Buckling coefficient
w”(A) =K1 1 V0 <A< A

e(;t — Ag)/ds v/ls <A Strain stiffening

\
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Traction force microscopy: collagen gel

Collagen 0.6mg/ml Collagen 1.2mg/ml Collagen 2.4mg/ml

160x160x50um

36



Traction force microscopy: collagen gel
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Traction force microscopy: collagen gel
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Traction force microscopy: collagen gel
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Traction force microscopy: collagen gel
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Traction force microscopy: micropillars

* Mlicrofabricated silicone elastomer pillars
* Small deflections: linear beam theory
* (Change geometry to tune pillar stiffness

A
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Traction force microscopy: micropillars

* Cell culture
* Protein coating for cell adhesion
* Scanning electron microscope images
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Traction force microscopy: micropillars

* Measurement of contractile forces
* Fibronectin (E), Vinculin (F and G)

4 8 12
FA Areal/post (nm?2)
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Methods for measuring cellular forces

Force and Cells per Spatial Substrate and Special Major
stress range measurement resolution? stiffness requirements Strengths limitations
Collagen  N/A 1x 104 to N/A 3D collagen type I None Ease of Qualitative
gel 1x 106 Young’s modulus: implementation  Cannot determine
0.01-0.1 kPa forces from single
cells
Tissue 1 uN-0.5 mN 100to 2x 106 4 mm 3D collagen type I,  Tissues <10 mm High throughput Requires highly
pillars 0.02-2.5 kPa Matrigel, or fibrin require Ease of contractile cells
with embedded microfabrication computation Cannot determine
PDMS pillars forces generated
Pillar stiffness: by single cells
0.05-1.125 pN pm-!
TFM 2-120 nN 1to1x 103 2pum 2D collagen type I;  Hydrogel or PDMS Uses standard 2D substrates
0.05-0.6 kPa fibronectin; or synthesis and lab equipment  Synthetic
arginine-glycine- functionalization and fluorescence sypstrates with
aspartic acid Microparticle microscopy limited biological
(RGD)-coated PEG,  tracking algorithms relevance
PDMS, or PA Computationally
Young's modulus: expensive
1.2-1,000 kPa Requires cell lysis
or manipulation
Micropillar 50 pN-100 nN 1-10 1um 2D collagen type I,  Microfabrication Ease of Forces are
0.06-8 kPa collagen type 1V, PDMS implementation independent for
or fibronectin- functionalization and computation posts
coated PDMS Fabrication
Pillar stiffness:
1.9-1,556 nN pm-1
3D TFM Not characterized 1 5um 3D RGD-conjugated  Confocal microscopy Fully resolved Currently limited to
0.1-5 kPa PEG 3D mesh editing 3D tractions in  single cells
Young's modulus: and finite-element  Physiologic 3D Computationally
0.6-1 kPa software environments  aypensive
3D, MMP-cleavable
synthetic hydrogels
DNA hairpin 4.7 pN-2 nN 1 0.2 um 2D RGD-conjugated  DNA hairpin High resolution 2D
0.15-50 kPa DNA hairpin on glass synthesis with standard  (yrrently limited to

Young's modulus:
50 GPa

fluorescence
microscopy

glass substrates
Long sample-prep
time
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Methods for measuring cellular forces

force measurements in

Force range Length scale h:iz::::yd In vivo? Strengths Limitations References Schematic
Absolute measurement Computationally involved
ZI? traction 1-10*Pa 10-10° ym .Substrate No Tunablllty of substrate High sensitivity to 21-42 ~
microscopy displacement stiffness . .
) displacement noise
Output is a 2D map I—Q
Computationally very
involved ‘ ,'L
. . . Unknown ECM material ‘
3'.3 traction 10-10%Pa 101-102 pm . ECM No Cells in 3[.) environment properties close to the 38,39
microscopy displacement Output is a 3D map cell ‘
Physiological ECM is
non-linear
Discrete rather than
Absolute measurement continuous adhesion ~
. . 102~ o Pillar No reference image Difficult to compare to
Micropillars 102 nN 1071 pm displacement No required physiological 44-54
Simple force calculation environments
Small stiffness range
No reference image
. required .
. 102- Cantilever . . Requires contact
—103 - (§ :
Cantilevers 102 nN 10-103 pm displacement No Simple and precise Low throughput 56-59 T
\

real time




Nuclear mechanaobiology
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Nuclear mechanobiology

Forces applied to the nucleus through cytoskeleton
* Modulate the effect of cytoplasmic signals
* Directly trigger changes in gene expression

Why involve the nucleus in mechanosensing?
* Distinguish between small force that only affect the cell surface and
larger forces that deform the nucleus
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Nuclear mechanobiology

Adapting the mechanical properties of the nucleus for genetic control
* Interplay of cytoskeleton-nucleus links
* Integrity and composition of the nuclear lamina
* The degree of DNA packaging into chromatin

Changes in the morphology and and deformability of the nucleus
Changes in the chromatin organization

Cytoskeleton: Bridge between the cell membrane and the nucleus
* Linker of nucleoskeleton and cytoskeleton (LINC) complex
* Direct transmission of mechanical signals
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Potential mechanisms of nuclear mechanosensing

Detachment of chromatin
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From integrin to the nucleus

ECM Plasma membrane Nuclear envelope Nucleus

,' Chromatin

MAR

Lamin A
Nuclear pore l

Stress wave propagation ~1 ms
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From integrin to the nucleus
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From integrin to the nucleus
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Low force
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